Friday, 1 September 2017

Liukuva Keskiarvo Ennustaminen Malli Ongelmat


SIMPLE MOVING AVERAGE. Problems käyttämällä yksinkertaista liikkuvaa keskiarvoa ennustustyökaluna. Liikkuva keskiarvo on todellisten tietojen seuranta, mutta se on aina jäljessä. Liikkuva keskiarvo ei koskaan saavuta todellisten tietojen huipuja tai laaksoja. data. It voi kertoa teille paljon tulevaisuudesta. Mutta tämä doesn t tehdä liikkuva keskiarvo hyödytön sinun tarvitsee vain olla tietoinen sen ongelmista. LIDE DESCRIPTION. AUDIO TRANSCRIPTION. So yhteenvetona, yksinkertainen liukuva keskiarvo tai yksi liikkuva keskiarvo, olemme havainneet ongelmia liikkuvan keskiarvon käyttämisessä ennustustyökaluna Liikkuva keskiarvo on todellisen tiedon seuranta, mutta se on aina jäljessä. Liikkuva keskiarvo ei koskaan saavuta todellisia tietoja, joita se tasoittaa, huiput tai laaksot Ja se ei todellakaan kerro suuresti tulevaisuudesta, koska se vain ennustaa yhtä kahta etukäteen, ja tämän ennustuksen oletetaan edustavan parasta arvoa tulevana ajanjaksona, yhden ajan mainoksessa Vance, mutta se ei kerro teille paljon pidemmälle. Se ei tee yksinkertaista liikkuvaa keskiarvoa hyödytön, itse asiassa näet yksinkertaisia ​​liikkuvia keskiarvoja. Luokka MovingAverageModel. A liikkuva keskimääräinen ennustemalli perustuu keinotekoisesti rakennettuun aikasarjaan, jossa tietyn ajanjakson arvo korvataan kyseisen arvon keskiarvolla ja joidenkin aikaisempien ja seuraavien aikajaksojen arvojen avulla. Kuten olette arvannut kuvauksesta riippuen tämä malli sopii parhaiten aikasarjatietoihin eli tietoihin, jotka muuttuvat ajan myötä. Esimerkiksi useat yksittäisten osakekannan kartat osoittavat 20, 50, 100 tai 200 päivän liukuvaa keskiarvoa trendien näyttämiseksi. Koska tietyn ajan ennustearvo on keskimäärin edellisinä jaksoina, ennuste näyttää aina jäljessä joko lisääntyneistä tai laskevista havaittavissa olevista riippuvaisista arvoista. Esimerkiksi jos datasarjassa on havaittavissa nouseva suuntaus, niin liikkumaton keskiarvo ennuste antaa yleensä aliarvioida riippuvaisen muuttujan arvot. Liikkuva keskiarvo - menetelmällä on etulyöntiasema muihin ennustemalleihin, koska se tasoittaa huippuja ja t karkeita tai laaksoja havainnointijoukossa Kuitenkin sillä on myös useita haittoja Erityisesti tämä malli ei tuota todellista yhtälöä Siksi ei ole kaikki hyödyllistä keskipitkän pitkän aikavälin ennustustyökaluna Se voidaan luotettavasti käyttää ennustamaan yksi tai kaksi jaksoa tulevaisuuteen. Liikkuva keskimääräinen malli on erikoistapaus yleisempi painotettu liukuva keskiarvo Yksinkertainen liikkuva keskiarvo, kaikki painot ovat yhtä suuria. Koska 0 3 Tekijä Steven R Gould. Fields perinnöllinen class. MovingAverageModel Rakentaa uuden liikkuva keskimääräinen ennustamismalli. MovingAverageModel int period Rakentaa uuden liikkuvaa keskimääräistä ennustusmallia määritellyllä aikavälillä. getForecastType Palauttaa yhden tai kahden sanan nimen tämäntyyppisen ennustamismallin. init DataSet dataSet Käytetään liukuvan keskiarvon model. toStringin alustamiseen on mahdollista ohittaa nykyisen ennustamismallin tekstimuotoinen kuvaus, mukaan lukien mahdollisesti käytettävät johdetut parametrit. Menetelmät, luodaan uusi liikkuva keskimääräinen ennustamismalli Jotta rakennettava pätevä malli tulisi kutsua init ja siirtää tietojoukko, joka sisältää joukon datapisteitä, aikamuuttujan, joka on alustettu itsenäisen muuttujan tunnistamiseksi. Rakentaa uuden liikkuvaa keskimääräistä ennustetta malli, jossa käytetään samaa nimeä itsenäisenä muuttujana. Parametrit independentVariable - tässä mallissa käytettävä riippumattoman muuttujan nimi. Rakentaa uuden liikkuvaa keskimääräistä ennustemallia käyttämällä määritettyä ajanjaksoa Kelvollisen mallin rakentamiseksi sinun tulee soittaa init ja siirretään tietojoukko, joka sisältää sarjan datapisteitä, jolloin aika-muuttuja on alustettu itsenäisen muuttujan tunnistamiseksi. Kausittaista arvoa käytetään määrittämään liikkuvien keskiarvojen laskemiseen käytettävien havaintojen lukumäärä. Esimerkiksi 50 päivän liikkumaan keskimäärin, jos datapisteet ovat päivittäisiä havaintoja, niin ajanjakso olisi asetettava arvoon 50. Määräaikaa käytetään myös tulevien aikojen t hattua voidaan tehokkaasti ennustaa 50 päivän liukuva keskiarvo ei voi kohtuudella ennustaa yli 50 päivää sen viimeisen ajanjakson jälkeen, jolta tietoja on saatavilla. Tämä voi olla edullisempaa kuin esimerkiksi 10 päivän ajan, jossa voitiin vain kohtuudella ennustaa 10 päivää viimeisen ajanjakson jälkeen. Parametrikausi - liikkumavälin laskemiseen käytettävien havaintojen määrä. Rakentaa uuden liikkuvaa keskimääräistä ennustemallia käyttämällä kyseistä nimeä itsenäisenä muuttujana ja määrätylle ajanjaksolle. Parametrit independentVariable - tässä mallijaksossa käytettävä riippumattoman muuttujan nimi - liikkuvan keskiarvon laskemiseen käytettävien havaintojen määrä. Käytetty liikkuvan keskiarvomallin alustukseen Tätä menetelmää on kutsuttava ennen minkä tahansa luokan muuta menetelmää. liukuvan keskiarvon malli ei johda ennustamaan yhtälöä, tämä menetelmä käyttää syöttötietojen DataSet laskemaan ennustearvot kaikkien riippumattomien me variable. Specified by init - liittymässä ForecastingModel Overrides init luokassa AbstractTimeBasedModel Parametrit dataSet - havaintojen datasarja, jota voidaan käyttää ennustamomallin ennusteparametrien alustukseen. Palauttaa tämän tyyppisen ennustamomallin yhden tai kahden sanan nimen. Säilytä Tämä lyhyt Pitkä kuvaus olisi toteutettava inString-menetelmässä. Tämä olisi ohitettava, jotta saadaan nykyisen ennustamismallin tekstimuotoinen kuvaus, mukaan lukien mahdollisuuksien mukaan käytetyt johdetut parametrit. Kohtaan toStringin määrittämä käyttöliittymä ennakointiModel Korvaa - luokkaan luokassa WeightedMovingAverageModel Palauttaa Nykyisen ennustamallin ja sen parametrien merkkijonon esittäminen. Keskimääräisten ja eksponenttien tasoittamismallien siirtäminen. Ensimmäisen askeleen siirtyessä keskiarvoihin, satunnaiset kävelymallit ja lineaariset trendimallit, ei-seulomalliset mallit ja suuntaukset voidaan ekstrapoloida käyttäen liikkuvan keskiarvon Tai tasoitusmalli Perusoletus oletus keskiarvosta ja smoo että aikasarja on paikallisesti paikallaan hitaasti vaihtelevalla keskiarvolla. Näin ollen voimme siirtää paikallisen keskiarvon, jotta voimme arvioida keskiarvon nykyarvon ja käyttää sitä lähitulevaisuuden ennusteena. Tätä voidaan pitää kompromissina keskimalli ja random-walk-ilman-drift - mallia Samaa strategiaa voidaan käyttää paikallisen trendin arvioimiseen ja ekstrapolointiin. Liukuvaa keskiarvoa kutsutaan usein alkuperäisen sarjan tasoitetuksi versioksi, koska lyhyen aikavälin keskiarvotus vaikuttaa tasoittamiseen ulos alkuperäisen sarjan kuoppia Kun säätämällä liikkuvan keskiarvon leveyden tasaamista, voimme toivoa löytävän jonkinlaisen optimaalisen tasapainon keskimääräisen ja satunnaisen kävelymallin suorituskyvyn välillä. Yksinkertaisin keskitemallin malli on yksinkertainen. Yhtäpainotettu liikkuva keskiarvo. Y: n arvolla t1, joka tehdään ajanhetkellä t, on sama kuin viimeisimpien m-havaintojen yksinkertainen keskiarvo. Tässä ja muualla käytän Y-hahmoa ennusteessa aikasarjasta Y mahdollisimman varhaisessa päivämääränä tietyn mallin mukaan. Tämä keskiarvo keskittyy ajanjaksoon t-m 1 2, mikä tarkoittaa sitä, että arvio Paikallinen keskiarvo pyrkii jäljessä paikallisen keskiarvon todellisesta arvosta noin m 1 2 jaksolla. Näin ollen sanomme, että datan keski-ikä yksinkertaisella liiketaloudellisella keskiarvolla on m 1 2 suhteessa siihen kauteen, jolle ennuste lasketaan tämä on aika, jolla ennusteet katoavat jäljessä datan kääntöpisteistä. Esimerkiksi, jos keskiarvo lasketaan viimeksi kuluneesta viidestä arvosta, ennusteet ovat noin 3 jaksoa, jotka myöhästyvät vastakkain kääntöpisteissä. Huomaa, että jos m 1, yksinkertainen liukuva keskimääräinen SMA-malli vastaa satunnaisen kävelymallin ilman kasvua Jos m on hyvin suuri, joka on verrattavissa arviointikauden pituuteen, SMA-malli vastaa keskiarvoista mallia. Kuten ennustamomallin parametreilla, se on tavanomaista säätää ki-arvoa n jotta saadaan parhaiten sopivat tiedot, eli pienimmät ennustevirheet keskimäärin. On esimerkki sarjasta, joka näyttää satunnaisvaihteluita hitaasti vaihtelevan keskiarvon ympärillä. Ensinnäkin yritetään sovittaa satunnaisen kävelyn kanssa Malli, joka vastaa yksinkertaista liikkumatonta keskiarvoa yhdestä termistä. Satunnaiskäytävä malli reagoi hyvin nopeasti sarjan muutoksiin, mutta näin tehdessään se poimii paljon datan kohinaa satunnaisvaihteluista sekä signaalista paikallinen Keskiarvo Jos me yrittäisimme yksinkertaisesti liikkua keskimäärin 5 ehdokasta, saamme tasaisemman näköisiä ennusteita. 5-aikavälinen yksinkertainen liukuva keskiarvo tuottaa huomattavasti pienempiä virheitä kuin satunnaiskäytävä malli tässä tapauksessa. Tämän tietojen keskimääräinen ikä ennuste on 3 5 1 2, joten se on yleensä jäljessä käännekohdista noin kolmella jaksolla Esimerkiksi laskusuhdanne näyttää esiintyneen kaudella 21, mutta ennusteet eivät kääntyneet vasta useisiin jaksoihin myöhemmin. Huomaa, pitkän aikavälin ennusteet SMA-modista El on horisontaalinen suora, kuten satunnaiskäytävässä. Siten SMA-mallissa oletetaan, että datassa ei ole trendiä. Vaikka satunnaiskäytävämallin ennusteet ovat yksinkertaisesti yhtä kuin viimeinen havaittu arvo, ennusteet SMA-malli on yhtä kuin viimeaikaisten arvojen painotettu keskiarvo. Statgraphicsin laskemat luottamusrajat yksinkertaisen liukuvan keskiarvon pitkän aikavälin ennusteille eivät laajene ennustehorisontin kasvaessa. Tämä ei tietenkään ole oikea. Valitettavasti ei ole mitään taustalla olevaa tilastoteoria, joka kertoo, kuinka luottamusväliä pitäisi laajentaa tähän malliin. Ei kuitenkaan ole liian vaikeaa laskea empiirisiä estimaatteja luottamusrajoista pitempään horisonttiennusteisiin. Esimerkiksi voit luoda laskentataulukon, jossa SMA-malli käytetään ennustamaan 2 askeleen eteenpäin, 3 askeleen eteenpäin, jne. historiallisen datanäytteen sisällä. Tämän jälkeen voit laskea virheiden näytteen keskihajotukset kullakin ennusteella h orizon, ja sitten rakentaa luottamusväliä pitempiaikaisille ennusteille lisäämällä ja vähentämällä asianmukaisten standardipoikkeaman kerrannaisvaikutuksia. Jos yritämme 9-portaista yksinkertaista liikkuvaa keskiarvoa, saamme vielä tasaisempia ennusteita ja enemmän jäljellä olevaa vaikutusta. Keskimääräinen ikä on nyt 5 jaksoa 9 1 2 Jos otamme 19-vuotisen liikkumavälin keskiarvon, keski-ikä kasvaa arvoon 10. Huomaa, että ennusteet ovat nyt jäljessä käännekohdista noin kymmenen jaksolla. Mikä taso on parasta tässä sarjassa Tässä on taulukko, joka vertaa virhetilastojaan, mukaan lukien myös 3-aikavälin keskiarvon. Mallin C, 5-aikavälinen liukuva keskiarvo, tuottaa RMSE: n pienimmän arvon pienellä marginaalilla kolmen ja 9 kuukauden keskiarvoissa. niiden muut tilastot ovat lähes samankaltaisia. Joten mallien, joilla on hyvin samankaltaiset virhestatukset, voimme valita, haluammeko ennustaa hieman reagointikykyä tai hieman tasaisempaa. Palaa sivun yläreunaan. Brown s Yksinkertainen eksponentiaalinen tasoitus eksponentiaalisesti painotettu liikkuvaa keskiarvoa. Edellä kuvatulla yksinkertaisella liikkuva keskiarvoominaisuudella on epätoivottava ominaisuus, että se käsittelee viimeiset k-havainnot yhtä lailla ja jättää täysin huomiotta kaikki edeltävät havainnot Intuitiivisesti, aiemmat tiedot on diskontattava asteittain - esimerkiksi viimeisin havainto saavat hieman enemmän painoa kuin 2. viimeisin, ja 2. viimeisin pitäisi saada hieman enemmän painoa kuin kolmas viimeisin ja niin edelleen Yksinkertainen eksponentti tasoitus SES malli tekee tämän. Let merkitsee tasaus vakiona luku välillä 0 ja 1 Yksi tapa kirjoittaa mallia on määrittää sarja L, joka edustaa nykyistä tasoa eli sarjan keskimääräistä arvoa, joka on arvioitu datasta tähän asti L: n arvo ajankohtana t lasketaan rekursiivisesti edellisestä omasta edellisestä arvostaan. Siten nykyinen tasoitettu arvo on interpolointi edellisen tasoitetun arvon ja nykyisen havainnon välillä, missä se ohjaa interpoloidun arvon läheisyyttä eniten Sentin ennustaminen Seuraavan jakson ennuste on yksinkertaisesti nykyinen tasoitettu arvo. Vastaavasti voimme ilmaista seuraavan ennusteen suoraan edellisten ennusteiden ja aikaisempien havaintojen perusteella jollakin seuraavista vastaavista versioista Ensimmäisessä versiossa ennuste on interpolointi Edellisen ennusteen ja aiemman havainnon välillä. Toisessa versiossa seuraava ennuste saadaan säätämällä edellistä ennustusta edellisen virheen suuntaan murto-osalla. On virheen aikaan t Kolmannessa versiossa ennuste on eksponentiaalisesti painotettu eli diskontattu liikkuva keskiarvo diskonttokertoimella 1. Ennakoivan kaavan interpolointiversio on yksinkertaisin käyttää, jos toteutat mallia laskentataulukkoon, johon se sopii yhteen soluun ja sisältää soluviitteitä, jotka osoittavat edellistä ennustetta, havainto ja solu, jossa arvo on tallennettu. Huomaa, että jos 1, SES-malli vastaa satunnainen kävelymalli wit jos 0, SES-malli vastaa keskiarvoa, olettaen, että ensimmäinen tasoitettu arvo on asetettu yhtä kuin keskiarvo Palaa sivun yläosaan. Yksinkertaisen eksponentiaalisen tasauksen ennusteessa olevien tietojen keskimääräinen ikä on 1 suhteellinen ennuste lasketaan Tämä ei ole tarkoitus olla ilmeinen, mutta se voidaan helposti osoittaa arvioimalla ääretön sarja Näin ollen yksinkertainen liukuva keskimääräinen ennuste pyrkii kääntämään käänteispisteitä noin yhdellä jaksolla Esimerkiksi 0 5 viive on 2 jaksoa, kun 0 2 viive on 5 jaksoa, kun 0 1 viive on 10 jaksoa jne. Tietyllä keskimääräisellä iällä eli viivästymisellä, yksinkertainen eksponentiaalinen tasoitus SES ennuste on jonkin verran parempi kuin yksinkertainen liikkuva keskimääräinen SMA-ennuste, koska se asettaa suhteellisen enemmän painoarvoa viimeisimpiin havaintoihin - se on hieman reagoivampi viime aikoina tapahtuneisiin muutoksiin. Esimerkiksi yhdeksällä ehdolla olevalla SMA-mallilla ja kahdella SES-mallilla on keskimääräinen ikä 5: lle da mutta SES-mallissa painotetaan viimeisimpiä kolmea arvoa kuin SMA-malli, mutta samalla ei unohda yli 9 vanhoja arvoja, kuten tässä kaaviossa on esitetty. Toinen tärkeä etu SES-malli SMA-mallissa on, että SES-malli käyttää tasausparametria, joka on jatkuvasti muuttuva, joten se voidaan helposti optimoida käyttämällä ratkaisija-algoritmia keskimääräisen neliövirheen minimoimiseksi. SES-mallin optimaalinen arvo tämän sarjan osalta ilmaisee On 0 2961, kuten tässä on esitetty. Tämän ennusteen tietojen keskimääräinen ikä on 1 0 2961 3 4 jaksoa, joka on samanlainen kuin 6-kertainen yksinkertainen liikkuva keskiarvo. SES-mallin pitkän aikavälin ennusteet ovat vaakasuora viiva kuten SMA-mallissa ja satunnaiskäytävä malli ilman kasvua Huomaa kuitenkin, että Statgraphicsin laskemat luottamusvälit eroavat nyt kohtuullisen näköisellä tavalla ja että ne ovat huomattavasti kapeampia kuin randin luottamusvälit om-kävelymalli SES-malli olettaa, että sarja on hieman ennakoitavampi kuin satunnaiskäytävä malli. SES-malli on itse asiassa ARIMA-mallin erityistilanne, joten ARIMA-mallien tilastollinen teoria tarjoaa hyvän perustan luottamusvälien laskemiselle SES-malli Erityisesti SES-malli on ARIMA-malli, jossa on yksi epäsuositusero, MA1-termi ja ei vakioaikaa, joka muuten tunnetaan ARIMA 0,1,1 - malliksi ilman vakioa. ARIMA-mallissa MA 1 - kerroin vastaa Esimerkiksi, jos asetat ARIMA 0,1,1 - mallin ilman vakioja täällä analysoituun sarjaan, arvioitu MA 1-kerroin osoittautuu 0 7029, joka on lähes täsmälleen yksi miinus 0 2961. On mahdollista lisätä oletus nollasta riippumattomalle vakioiselle lineaariselle trendille SES-mallille. Tähän voidaan tehdä vain ARIMA-malli, jossa on yksi epäsuositusero ja MA1-termi vakiolla eli ARIMA 0,1,1 - mallilla pitkällä aikavälillä Sitten on trendi, joka vastaa koko arviointikauden aikana havaittua keskimääräistä trendiä Et voi tehdä kausittaista säätöä, koska kausittaiset säätömahdollisuudet ovat pois käytöstä, kun mallityyppi on asetettu ARIMA: lle. Voit kuitenkin lisätä vakion pitkän Terminen eksponentiaalinen trendi yksinkertaiseen eksponentiaalisen tasoitusmallin kanssa kausittaisen säätämisen kanssa tai ilman sitä käyttämällä inflaatiota säätämisvaihtoehtoa ennusteprosessissa Asianmukaista inflaation prosentuaalista kasvuvauhtia jaksoa kohti voidaan arvioida laskennan kertoimeksi lineaarisessa trendimallissa, joka on sovitettu Yhdessä luonnollisen logaritmimuunnoksen kanssa tai se voi perustua muihin pitkäaikaisiin kasvunäkymiin liittyvästä riippumattomasta tiedosta. Palaa sivun alkuun. Brown s Lineaarinen eli kaksinkertainen eksponentiaalinen tasoittaminen. SMA-mallit ja SES-mallit olettavat, että ei ole olemassa suuntausta Kaikenlaisia ​​tietoja, jotka ovat yleensä OK tai ainakin ei-liian-huono 1-askel eteenpäin ennusteet, kun tiedot ovat suhteellisesti noi syy, ja niitä voidaan muokata siten, että ne sisältävät lineaarisen lineaarisen kehityksen, kuten edellä on esitetty. Mitä lyhyen aikavälin trendeihin Jos sarjassa on vaihteleva kasvuvauhti tai syklinen kuvio, joka erottuu selkeästi melusta, ja jos on tarvetta Ennustetaan enemmän kuin 1 jakso eteenpäin, paikallisen trendin estimointi saattaa myös olla kysymys Yksinkertainen eksponentiaalinen tasoitusmalli voidaan yleistää lineaarisen eksponentiaalisen tasoittavan LES-mallin saamiseksi, joka laskee paikalliset arviot sekä tasosta että trendistä. Yksinkertaisin aikamuuttuva suuntaus malli on Brownin lineaarinen eksponentiaalinen tasoitusmalli, jossa käytetään kahta erilaista tasoitettua sarjaa, jotka keskittyvät eri ajankohtiin. Ennusteiden kaava perustuu kahden keskipisteen linjan ekstrapoloimiseen. Tämän mallin Holt s: n hienostunut versio on Seuraavassa selostetaan Brownin lineaarisen eksponentiaalisen tasoitusmallin algebrallinen muoto, kuten yksinkertaisen eksponentiaalisen tasoitusmallin malli, voidaan ilmaista monissa erilaisissa, mutta e Kolmiarvoiset muodot Tämän mallin vakiomuoto on yleensä ilmaistu seuraavasti: Let S tarkoittaa yksinkertaisesti tasoitettua sarjaa, joka saadaan soveltamalla yksinkertaista eksponenttista tasoitusta sarjaan Y, eli S: n arvo ajanjaksolla t on annettu. Muista, että yksinkertaisen eksponentiaalisen tasoituksen alla tämä olisi Y: n ennuste ajanjaksolla t 1 Sitten S merkitsee kaksinkertaisen tasoitetun sarjan, joka saadaan käyttämällä yksinkertaista eksponentiaalista tasoitusta käyttäen samaa sarjaa S. Lopuksi Y: n ennustetta mille tahansa k 1 on annettu. Tämä tuottaa e 1 0 eli huijaa hieman ja anna ensimmäisen ennusteen olevan yhtä todellinen ensimmäinen havainto, ja e 2 Y 2 Y 1, jonka jälkeen ennusteet muodostetaan käyttämällä edellä olevaa yhtälöä, saadaan samat sovitut arvot Kuten S ja S perustuva kaava, jos jälkimmäiset käynnistettiin käyttämällä S 1 S 1 Y 1 Tätä malliversiota käytetään seuraavalla sivulla, joka kuvaa eksponentiaalisen tasauksen yhdistelmää kausittaisella säätöllä. Holt s Linear Exponential Smoothing. Brown S LES - malli laskee paikalliset arviot tasosta ja trendistä tasoittamalla viimeaikaisia ​​tietoja, mutta se, että se tekee niin yhdellä tasoitusparametrilla, rajoittaa tietomalleja, jotka pystyvät sopeutumaan tasoon ja suuntaukseen, eivät saa vaihdella at riippumatonta tasoa Holtin LES-malli käsittelee tätä ongelmaa sisällyttämällä kaksi tasoitusvaketta, yksi tasolle ja yksi trendille Joka kerta t, kuten Brownin mallissa, on paikallisen tason L t ja arvio T t paikallinen trendi Tässä ne lasketaan rekursiivisesti y: n arvosta t havaitussa ajanhetkessä t ja edellisistä tason ja trendin arvioista kahdella yhtälöllä, jotka soveltavat erikseen eksponenttista tasoitusta. Jos arvioitu taso ja trendi ajanhetkellä t-1 Ovat vastaavasti L t 1 ja T t-1, silloin Y t: n ennuste, joka olisi tehty ajanhetkellä t-1, on yhtä kuin L t-1 T t-1 Kun todellinen arvo havaitaan, taso lasketaan rekursiivisesti interpoloimalla Yt: n ja sen ennusteen L t-1 T t-1 välillä käyttäen painotuksia ja 1. Arvioitua tasoa, eli L t Lt 1: n muutosta voidaan tulkita meluisaksi mittaukseksi suuntaus ajankohtana t Trendin päivitetty arvio arvioidaan sitten rekursiivisesti interpoloimalla L: n välillä t L t 1 ja edellisen trendin trendin T t-1 käyttäen painotuksia ja 1. Trenditasoitusvakion tulkinta vastaa tasonsäätövakion tasoa. Pienillä arvoilla olevat mallit olettavat, että trendi muuttuu vain suuremmalla hitaudella, kun taas suurempien mallien oletetaan muuttuvan nopeammin. Suuri malli uskoo, että kaukana oleva tulevaisuus on hyvin epävarma, koska trendien arvioinnin virheet tulevat melko tärkeiksi, kun ennustetaan enemmän kuin yksi aika edellä. Palaa alkuun Sivutaso tasoittaa ja voidaan arvioida tavallisella tavalla minimoimalla yhden askeleen ennusteiden keskimääräinen neliövirhe. Kun Statgraphicsissa tämä tehdään, arviot osoittavat olevan 0 3048 ja 0 008. tarkoittaa, että mallissa oletetaan, että trendi vaihtelee hyvin vähän ajanjaksosta toiseen, joten pohjimmiltaan tämä malli yrittää arvioida pitkän aikavälin suuntausta. Vastaavasti käsitteellä "keski-ikä" se paikallisen tason sarja, keskimääräinen ikä, jota käytetään paikallisen trendin arvioinnissa, on verrannollinen 1: een, vaikka se ei ole täsmälleen sama. Tässä tapauksessa se osoittautuu 1 0 006 125 Tämä isn ta erittäin tarkka luku koska tarkkuuden tarkkuus ei ole todellakaan 3 desimaalin tarkkuudella, mutta se on samaa yleistä suuruusluokkaa kuin näytteen koko 100, joten tämä malli on keskimäärin melko paljon historiaa trendin arvioimiseksi. Alla oleva taulukko osoittaa, että LES-malli arvioi jonkin verran suurempaa paikallista suuntausta sarjan lopussa kuin SES-trendimallissa arvioitu jatkuva kehitys. Myös arvioitu arvo on lähes identtinen SES-mallin kanssa sovittamalla tai ilman suuntausta , Joten tämä on melkein sama malli. Nyt nämä näyttävät kohtuullisilta ennusteiksi mallille, jonka pitäisi arvioida paikallista trendiä. Jos näet silmämunin tämän tontin, näyttää siltä, ​​että paikallinen trendi on kääntynyt alaspäin lopussa sarja Wh at on tapahtunut Tämän mallin parametreja on arvioitu minimoimalla 1-askeleen ennusteiden neliövirhe, ei pidemmän aikavälin ennusteita, jolloin trendi ei tee paljon eroa Jos kaikki olet tarkastelemassa ovat 1 - etenemisvirheitä, et näe suurempaa kuvaa suuntauksista yli sanoa 10 tai 20 jaksoa Jotta tämä malli olisi paremmin sopusoinnussa tietojen silmämunien ekstrapolointiin, voimme säätää manuaalisesti trendin tasoitusvakion niin, että se käyttää trendin estimointiin lyhyemmän perustan Esimerkiksi jos päätämme asettaa 0 1, paikallisen trendin arvioinnissa käytettävien tietojen keskimääräinen ikä on 10 jaksoa, mikä tarkoittaa, että lasketaan keskiarvo viimeisen 20 jakson aikana tai niin Tässä on se, mitä ennustettu tontti näyttää, jos asetamme 0 1 säilyttäen 0 3 Tämä näyttää intuitiivisesti kohtuulliselta tässä sarjassa, vaikkakin on todennäköisesti vaarallista ekstrapoloida tämä trendi yli 10 jaksoa tulevaisuudessa. Mitä virhestatuksista tässä on mallivertailu f Tai edellä kuvatut kaksi mallia sekä kolme SES-mallia SES-mallin optimaalinen arvo on noin 0 3, mutta vastaavilla tuloksilla, joilla on hieman enemmän tai vähemmän vastetta, saadaan vastaavasti 0 5 ja 0 2. A Holt s lineaarinen exp tasoitus alfa 0 3048 ja beeta 0 008. B Holtin lineaarinen pikselointi alfa 0 3: lla ja beeta 0 1. C Yksinkertainen eksponenttinen tasaus alfa 0 5. D Yksinkertainen eksponentiaalinen tasoitus alfa 0 3. E Yksinkertainen eksponenttinen tasaus alfa 0 2: lla. Kaikki tilastot ovat lähes samanlaisia, joten emme todellakaan pysty tekemään valintaa yhden askeleen ennakkoilmoitusvirheiden perusteella. Meidän on pudottava muut näkökohdat. Jos uskomme vahvasti, että on järkevää perustaa nykyinen trenditieto siitä, mitä on tapahtunut viimeisen 20 ajanjakson aikana tai niin, voimme tehdä tapauksen LES-mallille, jossa on 0 3 ja 0 1 Jos haluamme olla agnostisia siitä, onko paikallinen suuntaus, niin yksi SES-malleista voisi olisi helpompi selittää ja antaa myös enemmän middl e-of-the-road - ennusteet seuraaville viideksi tai kymmenelle jaksolle Palaa sivun yläreunaan. Mikä suuntaus-ekstrapolointi on paras horisontaalinen vai lineaarinen? Empiirinen näyttö viittaa siihen, että jos tietoja on jo jo tarpeellista inflaatiota varten, niin voi olla varomaton ekstrapoloida lyhytaikaisia ​​lineaarisia suuntauksia hyvin pitkälle tulevaisuuteen. Tänään näkyvät trendit voivat hidastua tulevaisuudessa erilaisten syiden vuoksi, kuten tuotteiden vanhentumisesta, lisääntyneestä kilpailusta ja teollisuuden syklisistä laskusuhdanteista tai nousuista. Tästä syystä yksinkertainen eksponentiaalinen tasoitustoimet tekevät usein parempaa näytteenottotapahtumaa kuin muutoin olisi odotettavissa, vaikka sen naiivi horisontaalinen suuntaus ekstrapolaatiosta Lineaarisen eksponentiaalisen tasoitusmallin vaimennetut trendimuutokset ovat myös käytännössä usein käytännössä esillä konservatiivisuuden muistiinpanossa sen suuntausennusteisiin. Vaimennettu trendi LES-malli voidaan toteuttaa erityisenä esimerkkinä ARIMA-mallista, erityisesti ARIMA 1,1,2-mallista. On mahdollista laskea luottamusvälit arou Eksponentiaalisten tasoitusmallien tuottamat pitkän aikavälin ennusteet, harkitsemalla niitä ARIMA-mallien erikoistapauksina Varo, että kaikki ohjelmistot eivät laske luottamusväliä näille malleille oikein. Luottamusvälien leveys riippuu mallin RMS-virheestä, tyypistä Yksinkertaisen tai lineaarisen tasoituksen taso iii tasoitusvakion s ja iv lukema ennusteiden aikaisempien jaksojen lukumäärä Yleisesti ottaen välekset levittyvät nopeammin SES-mallin suuremmiksi ja ne levittyvät paljon nopeammin, kun ne ovat lineaarisia eikä yksinkertaisia tasoitus on käytössä Tätä aihetta käsitellään edelleen huomautusten ARIMA-malleissa. Palaa sivun yläosaan.

No comments:

Post a Comment